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At first glance, just with several good analysis methods and an ex-
haustive search of the candidate solutions space with Gödel’s num-
bering, an optimal solution can be found for any structural problem.

But the computational cost of this ‘‘design method’’ would be in-
tractable in a formal sense (NP-completeness theory).

Furthermore, it can be the case that there exists no solution.

So, it is worth of consideration a design theory as a different one
that an analysis theory.
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1. Analysis & Design

2. The design theory: two examples

3. The design theory: a short tour

4. The design theory: issues ‘‘to do’’
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Analysis versus Design: shared elements

The structural problems. A fairly large subset of them can be defined as a
set of known forces in static equilibrium (the Maxwell’s class). Let be P one of
them.

−Q

Q

L

compression—column, tower

bending—beam, bridge

p

A B

0.5pL 0.5pL

L

The structural requirements, R. Strength, stiffness, stability,. . . Here, only
strength will be considered in the classical fashion: σ ≤ f

The structural solutions, {S1, . . .}. A set of bodies with suitable shapes for
the problem, of any material with known physical properties. Here, only
allowable stress, f, and weight density, ρ, will be considered.
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Analysis versus Design: different questions

Let be P a definite structural problem subject to R.

Analysis Design
Let be S a (guessed) solution. Let be G a set of additional require-

ments over the solutions of P .

Are the structural requirements R
satisfied by S for P?

What is the subset of feasible solu-
tions for P for which R and G are
fulfilled?

How far is S from exactly satisfying
any condition in R?

What is the subset of feasible solu-
tions for P , R and G for which one
of the requirements is exactly satis-
fied?

How is the performance of S with
regard to any magnitude of interest?

What is the best solution of the fea-
sible set respect to any cost of in-
terests? i.e., what is the solution of
minimal cost?
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Analysis versus Design: different approaches

Analysis: Given P and S, calculate R

Design: Given P and R (and probably G), calculate S

No surprising, as we have an analysis theory, we have a design
theory too. The latter came first (Galileo) that the former (if we
put aside the works of Leonardo).

Remarks: G stands for no-structural requirements. Some of them can be
computable, but someothers aren’t.

G is included into the guessed solution S in the analysis case.
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Analysis equal Optimum Design: an intersection point
Let us consider an abstract, structural optimization problem subject to
equilibrium constraints:

opt ‖q‖ with Q = Hq

The Lagrange’s formula will give:

∂

∂q

(

‖q‖ + λ
T (Q − Hq)

)

= 0 ⇒ HT λ =
∂‖q‖
∂q

Let us consider two simple examples of q metric:

‖q‖ = 1

2
eT q with e = q ÷ k ‖q‖ = Li ·abs (qi)

λ = u and e = HT u λ = u⋆, e⋆ = HT u⋆

and e⋆ = L·sgn(q)
Linear analysis as usual Volume optimization or. . .

¡plastic analysis!

See Rozvany’ or Prager’ papers for additional formulations. Nevertheless,
a design theory is not the same that a structural optimization theory, so the
previous differences remain.
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The design theory: the minimal problem

Q

Q

L

the problem

ρAL

constant thickness solution

Q + ρAL

Q

ρAL

the solution/problem system

Analysis: σ =
Q + ρAL

A
≤ f?

Some conclusions for designing:

min A =
Q

f − ρL
min self-weight = Q

ρL

f − ρL
= Q

L
f

ρ − L

f/ρ is a characteristic length of the material, its structural scope, A. In this
case, it is also the scope of the constant thickness solution (as structural layout),
L = A, but generally L = f(A, . . .).

Copyleft c©Vázquez Espí, 2012. <<< | >>> On Structural Design as Research Topic 7 / 49

http://habitat.aq.upm.es/gi/mve/


The design theory: the minimal problem

Q

Q

L

the problem

ρAL

constant thickness solution

Q + ρAL

Q

ρAL

the solution/problem system

Analysis: σ =
Q + ρAL

A
≤ f?

Some conclusions for designing:

min A =
Q

f − ρL
min self-weight = Q

ρL

f − ρL
= Q

L
f

ρ − L

With this simple view, we can write:

efficiency: r =
net load

total load
=

Q

Q + ρAL
= 1 −

L

L
load cost: C =

1

efficiency
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The design theory: the minimal problem

Q

Q

L

the problem

ρAL

constant thickness solution

Q + ρAL

Q

ρAL

the solution/problem system

Analysis: σ =
Q + ρAL

A
≤ f?

Some conclusions for designing:
What happens if we would know in advance the scope, L, of a set of similar
solutions for a stated Maxwell’s class of problems of size L?
We would know in advance:

• the efficiency of the solution, r ≤ 1 − L/L;

• its material volume as a fraction of the net or useful load, ≥ 1 − r

r
× Q

ρ
;

• and the remaining tasks will be defining its geometry and details.

Copyleft c©Vázquez Espí, 2012. <<< | >>> On Structural Design as Research Topic 9 / 49

http://habitat.aq.upm.es/gi/mve/


The design theory: the minimal problem

Q

Q

L

the problem

ρAL

constant thickness solution

Q + ρAL

Q

ρAL

the solution/problem system

Analysis: σ =
Q + ρAL

A
≤ f?

Some conclusions for designing:
What happens if we would know in advance the scope, L, of a set of similar
solutions for a stated Maxwell’s class of problems of size L?
Note that we also know in advance if a stated problem is unsolvable.
If we know the scope for the best layout, we know that all the problems with
L > L have no solution. (If we do not know if the layout is actually the best,
we know that these problems have no solution with this layout: we must look
for a better one!)
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The design theory: an everyday example

Sizing the cross-section A with shape S of a member of length L
supporting axial force q

Rule for. . . Analysis Design

Tension σc =
q

A
≤ f A ≥ q

f

Compression σc =
q ·ω(λ, S)

A
≤ f

with λ = λ(L, i), i = i(A, S)

To solve for A:

Af = q ·ω(λ, S)

This is not a rule!

The analysis rule cannot be easily transformed in design rule because of the
algebraic complexity of ω.
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The design theory: an everyday example

Destiling a approximate design rule for the compression case:

a Aesthetic requirement: for a good design it should be ω ≤ 2 (ω is a factor of
efficiency of the layout).

b The ratio L2/q is invariant for solutions with similar shape but different size,
L2

q
=

Af

λ2 ·ω(λ)·E2
, where E is a property for each cross-section shape. We can

write several proportions between invariants, for example: λ/λ’ = L/L’.

c We write Af

ω
= q → Af

ω
+ Af = q + Af → Af = q + Af

(

1 − 1

ω

)

: that
is, we descompose Af in two parts: one required by q, the other by stability and
doesn’t depend on q.

d As ω(λ) is another invariant, we search for a good approximation within aesthetic

space, and we find that
(

1 − 1

ω

)

≈ 1

2

(

λ

λω=2

)2

Mixing all these results, we get Af ≈ q + α·L2 with α(S) =
f

λ2 ·ω ·E2

∣

∣

∣

∣

ω=2

: a

rule for estimating A for each cross-section shape, that only depends of the
problem data, q and L, and our selection of the shape. For normal steel and
good cross-section, like tubes, α ≈ 10 kN/m2.
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The design theory: a short tour (Contemporary jargon, informal definitions)

The basics are well established by Galileo from proportional rules:

(ρA)L + Q = (ρA)L’

where L is the volume height of structure and L’ is its limits for each material
and shape. He examines the vertical tension and simple flexion cases (but with
only momentum equilibrium in the later).

With modern materials like steel, with scope of several kilometres, the size of
actual structures is small, very small: L ≪ L ≈ O(A). As a consequence,
the exact Galileo’s rule has no precision: the self-weight is negligible in almost
all cases. It is not surprising that these issues have received little attention.
(Nevertheless, the interest of the subject is undoubted: if we consider other
costs, like carbon dioxide emission or embodied energy, the self-cost would be
not negligible when compared with other phases of life cycle: maintenance, use,
etc.)
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The design theory: a short tour (Contemporary jargon, informal definitions)

A few definitions and warnings.

Each set of known forces in global equilibrium defines a Maxwell problem. We
must know (or select) actions and reactions and its relative position.

A Maxwell’s structure is any set of internal forces (tension or compression)
in self-equilibrium that added to the external forces of a Maxwell’s problem
satisfies that every subset of forces, internal or external, acting at each point is
in equilibrium (local equilibrium). There is no self-weight here.

Any open funicular polygon (parabola or catenary) is and is not a Maxwell’s structure. We
must either define arbitrarily some reactions or close the polygon: arch and tie, or cable and
strut, or arch and cable,. . .
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The design theory: a short tour (Contemporary jargon, informal definitions)

A few definitions and warnings.

Each set of known forces in global equilibrium defines a Maxwell problem. We
must know (or select) actions and reactions and its relative position.

A Maxwell’s structure is any set of internal forces (tension or compression)
in self-equilibrium that added to the external forces of a Maxwell’s problem
satisfies that every subset of forces, internal or external, acting at each point is
in equilibrium (local equilibrium). There is no self-weight here.

Let us define the quantity of structure by:

V =

∫

V

abs (σ) dV =
∑

i

abs (qi) Li

where q is the internal force in each member and L its length; V stands for
all the volume of the structure. The definition has sense for any Maxwell’s
structure.
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The design theory: a short tour (Contemporary jargon, informal definitions)

The Maxwell’s theorem (ca. 187). For all strut and tie structures that solve
a Maxwell’s problem the Maxwell’s number M is invariant:

M =

∫

V

σ dV =
∑

qL

(Proof: consider virtual expansion)

Q

Q

L

M = −QL

M = 0

p

A B

0.5pL 0.5pL

L
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The design theory: a short tour (Contemporary jargon, informal definitions)

The Maxwell’s theorem. Corollaries.

• The difference between the quantity of tension structure and that of
compression structure is invariant.

M = V+ − V
−

and V = V+ + V
−

as far as M = Liqi and V = Liabs (qi).

• If any change in the structure definition reduces the quantity in tension
(or in compression) it also reduces the other part and the total quantity.

• The quantity of structure determines its minimal volume and weight.
When the absolute value of allowable stress is constant, namely f, then
V = V/f and P = V/A (strict sizing). With self-weight and constant

thickness hyphotesis, replace ‘=’ with ‘>’ because the strict sizing is generally

unattainable.

• Any structure only in tension (or in compression) has a minimal quantity
of structure and it could be equivalent to any other minimal structure for
the same Maxwell’s problem (with strict sizing).

If V
−

= 0 then V = M = V+; if V+ = 0 then V = −M = V
−

.
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The design theory: a short tour (Contemporary jargon, informal definitions)

Michell’s theorem. (1904)

A Maxwell’s structure can attain the minimal quantity of structure if the space
occupied by it can be virtually deformed, such that the virtual strains in all
members of the structure attain the same absolute value and with equal sign
than its original stress, and that value is not less than the absolute virtual
strain of any line segment of the space.

If the virtually deformed space extents to infinity in all directions, the quantity
of structure can be an absolute minimum, otherwise it will be a minimum only
relatively to those structures within the same finite space.
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The design theory: a short tour (Contemporary jargon, informal definitions)

Michell’s theorem. Proof.

Let us consider a Maxwell’s problem and all appropriate Maxwell’s structures
within a given boundary. Now consider that the enclosed space undergoes a
virtual deformation such that no linear element has absolute strain greater
than ε.

Virtual work principle applied to each structure S gives us:

δW =
∑

S

∆·L·q

where δW is the virtual work of the known forces, independent of the structure
S, and ∆ is the virtual strain of each bar.

Then:

δW =
∑

S

∆·L·q ≤
∑

S

abs (∆) L abs (q) ≤ ε
∑

S

L abs (q) ≤ εVS

The virtual work of known forces is a lower limit of the quantity of
structure of any of them.

Copyleft c©Vázquez Espí, 2012. <<< | >>> On Structural Design as Research Topic 19 / 49

http://habitat.aq.upm.es/gi/mve/


The design theory: a short tour (Contemporary jargon, informal definitions)

Michell’s theorem. Proof.

Let us consider a Maxwell’s problem and all appropriate Maxwell’s structures
within a given boundary. Now consider that the enclosed space undergoes a
virtual deformation such that no linear element has absolute strain greater
than ε.

δW =
∑

S

∆·L·q ≤
∑

S

abs (∆) L abs (q) ≤ ε
∑

S

L abs (q) ≤ εVS

If a structure O exists such that ∆·q = ε·abs (q) in all parts, the signs of
inequality may be replaced by that of equality, and

εVO = ε
∑

O

L·abs (q) = δW ≤ εVS

so that the quantity of structure O is a minimum. Q.E.D.

Remark: In my view, there is no sound proof that a such structure O
fulfilling the theorem exists for any Maxwell’s problem.
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The design theory: a short tour (Contemporary jargon, informal definitions)

Michell’s theorem. Proof.

Let us consider a Maxwell’s problem and all appropriate Maxwell’s structures
within a given boundary. Now consider that the enclosed space undergoes a
virtual deformation such that no linear element has absolute strain greater
than ε.

δW =
∑

S

∆·L·q ≤
∑

S

abs (∆) L abs (q) ≤ ε
∑

S

L abs (q) ≤ εVS

If a structure O exists such that ∆·q = ε·abs (q) in all parts, the signs of
inequality may be replaced by that of equality, and

εVO = ε
∑

O

L·abs (q) = δW ≤ εVS

so that the quantity of structure O is a minimum. Q.E.D.

Remark: No hipotesis on constitutive equation is needed if ε is small
enough.
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The design theory: a short tour (Contemporary jargon, informal definitions)

Michell’s theorem. Examples.

0.5Q

0.5Q

Q

a

a

+
ε

0

∈
(0

, +ε)

∈
(0, −ε)

0 0

−
ε

M = 0 V = 2Qa

M = 0 V = 1

4
(2 + π)QL

Q

A B

Q/2 Q/2

L

−
ε

+
ε

The blue lines are the principal directions of strain tensor.
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The design theory: a short tour (Contemporary jargon, informal definitions)

Michell’s theorem. Optimality criterion.

∂2φ

∂α∂β
= 0

where φ stands for principal direction of virtual strain tensor, and α, β, for
orthogonal curvilinear co-ordinates.
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The design theory: a short tour (Contemporary jargon, informal definitions)

Michell’s theorem. Shape search by graphical methods. The 60’s
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The design theory: a short tour (Contemporary jargon, informal definitions)

Michell’s theorem. Shape search by simulated annealing. (1995)
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The design theory: a short tour (Contemporary jargon, informal definitions)

Michell’s theorem. Shape search by Auto-organised chaos
(Payten et alii , 1997)
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The design theory: a short tour (Contemporary jargon, informal definitions)

Michell’s theorem. Shape search by ground structure method.
(Sokol, 2011)
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The design theory: a short tour (Contemporary jargon, informal definitions)

The kernel of the theory

A) Michell (1904) established an optimality criterion for Maxwell
problems in the case L → 0 (or ρ = 0). Furthermore, he
established the differential equation of the optimal layout. In the
last years, there is a renewed interest on the subject: GS:
Michell+truss+FEM+[after 2000] = 235 papers. (Maybe
the centenary of the Michell paper?)
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The design theory: a short tour (Contemporary jargon, informal definitions)

The kernel of the theory

B) When the self-weight is isomorphic with the net load (the load
of the Maxwell’s problem), the rule of Galileo is exact among the
solutions of similar shape. This is very useful for quick, every-
day designing of common types of structures: constant deep
beams and so. . .

C) Joining the two last points, if we know the Michell solution, we
can calculate the maximal scope for a stated problem, and applying
the Galileo rule, obtain minimal structural weight and associated
costs for each case of the problem with given size. (See the minimal
problem above.)
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The design theory: a short tour (Contemporary jargon, informal definitions)

The kernel of the theory

B) ∀P, Q : P ∝ Q

strict sizing: ∀P, Q : P = VP +Q ·ρ/f = VP +Q ÷ A

A) VP =0 = µQL ⇒ µ = VP =0 ÷ QL

C) VQ=0 = µP L = µVQ=0 ·L ÷ A ⇒ L = A ÷ µ

Unformally, the scope L is an eigenvalue for the relation between P
and P + Q; so, the role of the scope is analogous than that of the
Euler load in stability problem.
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The design theory: a short tour (Contemporary jargon, informal definitions)

The kernel of the theory

D) Last but not least, the Michell’s theorem and its relatives,
teaches us very useful rules about the geometric properties of
the well conceived structural layouts for cases of small size.
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The design theory: a short tour (Contemporary jargon, informal definitions)

Weakness (criticism)

1. ‘‘In spite of a prolonged international research effort, Michell layouts
have only been determined for a few simple loading conditions’’
(Rozvany, 1984). As a consequence, in many problems the estimate for
the scope is valid only for some concrete structural layouts, not for the
structural problem. (min VL=0 unknown)

2. Generally, the self-weight is not isomorphic with the net load, so that all
the theorems over the Maxwell’s class of structural problems are at best
approximations for real problems, for which the size is not always
negligible. (P 6∝ Q and V ÷ QL 6= V ’ ÷ QL’)

3. Joining the two last points, we can doubt of the existence of a finite limit
over the scope for each structural problem or layout. (From my point of
view there is no doubt at all: the limit exists although unknown. . . but
my opinion belongs to beliefs, not to facts, as does the opposite one. As
far as I know, there is no consistent proof in any of both cases.)
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The design theory: a short tour (Contemporary jargon, informal definitions)

Structural Shape (or Form): a design view (no topology here)

A shape (L, SMichell,Q, λ, t)

Q

L

A Maxwell’s problem

Shape ≡ L: size + S: scheme + λ: slenderness + t: thickness.

Galileo worked with all these parameters but scheme (he used the same
scheme in each case). The idea of scheme was introduced by Aroca (ca.
1970).
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The design theory: a short tour (Contemporary jargon, informal definitions)

Structural Shape: a design view (no topology here)

A shape with different scheme
(SCuchillo español,Q) . . .

. . . or different size (L/2)

. . . or different slenderness (2λ) . . . or different thickness (5t)
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The design theory: a short tour (Contemporary jargon, informal definitions)

Structural Shape: a design view (no topology here)

Remarks:

• The ‘‘thickness’’ property is a material density distribution
—a member sizing law— in a general sense.

• The ‘‘constant thickness’’ property means a constant thick for
each member of a Maxwell’s structure, not the same for all.

• In both cases, t stands for a scalar intensity, being constant
the distribution or the proportions among members thicks.
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The design theory: a short tour (Contemporary jargon, informal definitions)

Structural Shape: a design view (no topology here)

Strict sizing

L → 0 L → L
Net Strength t2 · f(S, λ, L/L)

Stiffness t2 · f(S, λ) ?
Efficiency f(S, λ, L/L)

Stability like stiffness?

Parkes’s Hypothesis. (1965) The optimum structure for a Maxwell’s problem
is the stiffest among all other structures with equal maximum stress. ‘‘The
cheaper, the stiffest.’’ ‘‘Proof’’ for a general deflection metric: strain energy
account (‘‘compliance requeriment’’).
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The design theory: a short tour (Contemporary jargon, informal definitions)

Improving structures

Theorem on optimum slenderness. (Aroca, ca. 1994)

The best slenderness for a scheme solving ‘‘vertical forces problems’’
is that for which the quantity of vertical structure is equal than that
of horizontal one.

1. ‘‘Give me a structural shape, I will return other that will be best
but with equal scheme, thickness and size (maybe the same).’’

λopt(S) = λ

√

V|

V−
⇒ Vopt(S) ≤ V

Remarks: The theorem can be applied to any problem with parallel
external forces. The slenderness and the quantities of structure has
to be mesured in parallel and orthogonal directions to the loads.
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The design theory: a short tour (Contemporary jargon, informal definitions)

Improving structures

Theorem on optimum slenderness. (Aroca, ca. 1994)

The best slenderness for a scheme solving ‘‘vertical forces problems’’
is that for which the quantity of vertical structure is equal than that
of horizontal one.

2. How does the quantity of structure grow with a non-optimum
slenderness?

V =
1

2
Vopt(S) ·

(

λopt(S)

λ
+

λ

λopt(S)

)

A very useful rule for everyday work!
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The design theory: a short tour (Contemporary jargon, informal definitions)

Improving structures

Bending likes simetrical solutions (Theorem). If your structure is

not simetric respect of the bend span and has optimal slenderness,
make it simetric by the mean of a simple mirror, and multiply its
original height by

√
2. It will look better now, won’t it? (The

quantity of structure is reduced as slenderness, by
√

2).

V = 2QL
: + =

V =
√

2QL

If you haven’t freedom enough, try this as much as you can! →
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The design theory: issues ‘‘to do’’

• Theoretical issues

• Semi-theoretical issues

• Structural Scope. Conjectures. Refutable, working hypothesis.
Load cost in bending.
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The design theory: issues ‘‘to do’’

• Theoretical issues

1. The Michell’s theorem gives us a sufficient condition. The main
question is: for what kind of problems there is no layout that
satisfies the optimality criterion?

2. In problems for which the Michell criterion is not necessary, is there
another?

3. Can the Michell’s theorem be generalised in any way in order to
include self-weight?

4. Can (at least) an analogous theorem (and analogous PDE) be
found for the pure self-weight case?

5. Can the theorem of optimum slenderness be generalized for other
problems that those of parallel forces?

6. How big is the error of the Galileo’s rule in each Maxwell’s problem?
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The design theory: issues ‘‘to do’’

• Semi-theoretical issues (The analytical approach is so complicated that probably
sooner than later one must recall in semi-numerical methods.)

1. For a simple problem like vertical compression ¿could there be a
solution with greater scope than the constant thickness solution?
My own hypothesis is that the answer is No. But as I am unable
of getting out a direct proof, I am looking for better solutions that
may refuse my own thesis. If a systematic search over a fairly large
set of compatible stress fields would fail to find a greater scope, the
hypothesis on constant thickness will be harder.

As it is customary in design theory, the method is the inverse than that of the
analysis: in 2D, for each compatible stress field in equilibrium with self-weight,
the shape of greater size is determined by three curves: σa = 0, σb = −f, and
σc = f, and the scope of the field is the height.

Copyleft c©Vázquez Espí, 2012. <<< | >>> On Structural Design as Research Topic 42 / 49

http://habitat.aq.upm.es/gi/mve/


The design theory: issues ‘‘to do’’

• Semi-theoretical issues (The analytical approach is so complicated that probably
sooner than later one must recall in semi-numerical methods.)

1. For a simple problem like vertical compression ¿could there be a
solution with greater scope than the constant thickness solution?
My own hypothesis is that the answer is No. But as I am unable
of getting out a direct proof, I am looking for better solutions that
may refuse my own thesis. If a systematic search over a fairly large
set of compatible stress fields would fail to find a greater scope, the
hypothesis on constant thickness will be harder.

2. Could we use FEM or other numerical, well-stated methods in the
previous problem?
With such a tool,
we will be able
to investigate the
question for sev-
eral failure criteria
or for additional
requirements, etc.
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The design theory: issues ‘‘to do’’

• Semi-theoretical issues (The analytical approach is so complicated that probably
sooner than later one must recall in semi-numerical methods.)

3. «The state of the art about the bending problem is worst than that
about the vertical compression problem: no Michell’s solution is
known for L → 0 (more precisely, I do not know it!).»

(Wrote at March, 2011)

a. My main concern here was to determine an optimal constant
thickness solution only acting self-weight so the scope for the problem
can be estimated. (2010)

λopt = 1.481

L = L = 1.325A

V

(P + Q)L
= 0.543

V ÷ A

P
= 0.719

Q = 0
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The design theory: issues ‘‘to do’’

• Semi-theoretical issues (The analytical approach is so complicated that probably
sooner than later one must recall in semi-numerical methods.)

3. «The state of the art about the bending problem is worst than that
about the vertical compression problem: no Michell’s solution is
known for L → 0 (more precisely, I do not know it!).»

(Wrote at March, 2011)

b. Furthermore, I was able to determine a very good constant thick-
ness solution only acting net load. This solution suggests strongly
that the Michell’s theorem is not ruling the bridge problem. (Villa-
manta, 4/21/2011)

λopt = 1.576
P → 0 (L ≈ 1.321A)

V

(P + Q)L
= 0.757

αi
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The design theory: issues ‘‘to do’’

• Semi-theoretical issues (The analytical approach is so complicated that probably
sooner than later one must recall in semi-numerical methods.)

3. «The state of the art about the bending problem is worst than that
about the vertical compression problem: no Michell’s solution is
known for L → 0 (more precisely, I do not know it!).»

(Wrote at March, 2011)

c. The transition between this two solutions is to be determined, as
the accuracy of the Galileo’s rule in this case.

L = 1.325AL = 0
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The design theory: issues ‘‘to do’’
Structural Scope. Conjectures.

Vertical compression problem: L = A, optimum solution: line with constant
thickness (for normal steel ≈ 2.5 km with f = 200 N/mm2).

Bending problem:
From simulated annealing shapes, L ≈ 1.23A (for high steel, ≈ 7, 7 km with
f = 500 N/mm2).
From best result up to date (catenary arc and cable), L ≈ 1.33A (for high steel,
≈ 8, 6 km with f = 500 N/mm2).
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The design theory: issues ‘‘to do’’
Structural Scope. Refutable, working hypothesis.

Main: For each class of Maxwell’s problems of similar geometry, structural
material and strength criterion, there is a structural size for which any
structure with any shape colapses under the only action of its self-weight. No
problem of greater size is solvable with such material and criterion.

Additional: The before mentioned size is the scope of the best structure for
the problem, each of whose members has a constant thickness along its length.

A refutation: (There are more. . . )

1. You should have to show a 2D shape that has a scope greater than f ÷ ρ for
the vertical compression problem, with material f, ρ, and elastic Von Mises
failure criterion.

This refuses the additional hypothesis.

2. If your shape has no limit over its feasible size at all, you have refused the
main hypothesis too.
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The design theory: issues ‘‘to do’’
Load Cost (and relatives).

b b

b

b

b

b

unfeasib
le

so
lu

tio
ns

1

2

10

0

C =
1

r

L/L 10.1 0.50

beautiful designs here, evil ones elsewhere

Akashi-Kaikyo bridge cost > 5.82

Further readings on this research: http://habitat.aq.upm.es/gi/mve/dt/
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