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ABSTRACT

The optimum use of materials became a key objective of engineering after Clausius
warned about the exhaustion of mineral resources in 1885. Structural optimization stems
from the approach of Maxwell (1870) and evolved thanks to the contributions of Michell, Cox
and many other authors until 1965. Thereafter, new approaches, postulated by Hemp, Prager
and Rozvany among others, have focused exclusively on the structure above the foundation.
Within this framework, the present article analyses in-depth the competing approaches re-
vealing different, practical results according to each theory. In order to illustrate the main
conclusions, a number of historical examples are included. The profound significance of the
conceptual scheme of the original Maxwell-Michell approach to reaching a sound structural
design theory is highlighted: a scheme that computes all the physical costs incurred in each
design, including foundation costs.

1 INTRODUCTION

The aim of the present article is to review the existing structural optimization theories with
the purpose of looking for a common basis to formulate problems of structural design with actual
practice in mind. The problems considered are restricted to the well known problem of design
truss-like structures, i.e., those composed with members of constant cross-section and joints. In
particular, the problem of designing the topology of a continuous medium, known as topology
optimization, is not considered, given its very different nature, even though good solutions for this
problem bear a visual resemblance to the optimal solutions for the former. The main reasons that
support the need for a critical review of this topic are: a) the prevalence of some confusion in
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the literature about the main objectives of structural design and of structural optimization; b) the
misunderstanding of Michell’s seminal article of 1904 [1], in spite of the fact that almost all authors
acknowledge the milestone character of this work; c) the existence of several approaches or theories
about structural optimal shapes, e.g., the Maxwell-Michell theory and the Prager-Hemp-Rozvany
theories, from which different outcomes can be obtained for equivalent problems, creating all sorts
of controversy and confusion—more than half a century ago, Cox [2] anticipated the possibility of
this controversy which has led to several public disagreements in the recent past (see, e.g., [3])—; d)
and, as a matter of fact, ‘structural engineering practice falls short behind of adopting optimization
based design procedures’ [4].

In order to introduce the framework as clear as possible, this work starts by attempting to fix
context, concepts and theoretical basis and defining a common nomenclature. Section 2 is devoted
to specifying what the day-to-day working goal of a structural designer is, and what kind of results
she or he expects from tools as optimization methods, putting it in the broader perspective of
Clausius [5]. Next, Section 3 is dedicated to introduce the mathematical basis of Maxwell’s and
Michell’s structural design theories in contemporary terms. In section 4, a brief history of the
evolution of theories after the work of Maxwell [6] is recalled, putting it in the broader perspective
of the cost and efficiency concepts, and remainingin Maxwell’s own realm, avoiding reinterpreting
his ideas with our modern interpretations of terms or concepts. In section 5, the basic formulations
of competing approaches and the differences are described. In section 6, several specific problems
and solutions are examined to underline that these differences are relevant. Finally, conclusions
and suggestions are exposed.

2 THE STRUCTURAL DESIGN CLASS OF PROBLEMS

As in any thermodynamic system, the definition of the structure to be analysed is arbitrary to
some extent. The analyser can be interested at some moment in the performance of a substructure
and she or he can re-arrange the former partition as appropriate. The problem pointed out by Prager
and Rozvany [7] illustrated in Fig. 2(a) of p. 12, constitutes a good instance of the latter case as the
analyser focuses on the bars that transmit a load to a vertical wall, delaying the analysis of the
wall itself. In fact, this is customary and very useful in structural analysis but, is it reasonable in
structural optimization? As this work will prove, it is not because of the physical cost.

There is no uncertainty about what composes the structure from a thermodynamic point of
view regarding physical cost: everything that has a physical cost in order to build and to use it.

At the very beginning of the design process, only the useful actions —the design purpose—,
the place and the requirements of any kind that the structure has to fulfill are given to the designer
as the design problem data. And, as pointed out by Hemp [8, p.1], ‘the theory [of structures] ought
to be in a position to tackle the design problem directly, that is, to begin with the given forces
and to produce by calculation the best structure that will safely carry them. [. . . ] this [is a] little
developed branch of the theory [in 1958, but] which may lead to developments of knowledge, such
as to make direct structural design a practical art of the normal techniques of engineering’.

Generally, there are multiple feasible solutions to the same design problem, although usually,
the purpose is to obtain the best possible solution, or at least, a better one with each new attempt.
Moreover, as each solution must fulfill both safety and stiffness requirements, the term of comparison
must be another indicator. Herein, following Michell, physical cost is adopted, preferring the
solution that requires a lower cost. Nonetheless, of course, there are other possible figures of merit
(see, e.g., [9] on “morphological indicator”).
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As a first approach, the physical cost can be represented by the self-weight of the structure, as
many costs during the manufacturing process are approximately proportional to it: CO2 emissions,
mineral resources consumption, etc[4]. Additionally, if the materials used allow very large scopes
with regard to the size of the structural problem considered, the self-weight of the different solutions
of the problem is negligible with respect to the useful loads (all the rest), and as a consequence,
the self-weight can be disregarded at first instance as a load [see 10].

This realm is where Maxwell’s or Michell’s ideas should be placed; they are not concerned about
the self-weight as a load, but very interested in the other costs relative —or proportional— to the
self-weight.

3 THE MAXWELL-MICHELL THEORY ON STRUCTURAL DESIGN

In 1870, Maxwell [6, pp. 175–177] shows that in a system of points in equilibrium under the
action of ‘attractions’ and ‘repulsions’, the sum of the products of each attraction by the length on
which it acts is equal to the same sum applied to the repulsions. Then, assimilating a frame to a
set of internal forces overlaid by a set of loads and reactions, indirectly he describes an invariant
for all the solutions to a structural problem so defined (i.e., a fully defined set of external forces
in equilibrium: a Maxwell problem, (see definition 1 in Table 1)): the virtual work of the external
forces when the space undergoes a uniform contraction that reduces it to a point, named hereafter
as Maxwell number M.

Later, in 1904, Michell [1] returns to Maxwell’s work, and shows explicitly the above invariant.
More interestingly, he demonstrates that the volume of a full-stressed structure solving a Maxwell
problem is minimum if the sum V of the products of the absolute value of the internal force, e,
of each bar by its length, ℓ, is minimum, i.e., if V =

∑

i |ei|ℓi is minimum. Michell named this
magnitude (V) as ‘Quantity’ and it has proven to be essential in the theory of structural design
[see 11]. In this work it is named ‘stress volume’ (see definition 5 in Table 1), denomination that
arises from the fact that |e|ℓ = |σ|Aℓ, being A the cross-sectional area of a typical truss bar and σ
its stress, hence V can be viewed as the stress volume of the framework. Other denominations have
been used: ‘structural work’ [12], ‘quantity of structure’ [13], ‘absolute pertinacity’ [14], ‘internal
load transportation measure’ [15], or ‘load path’ [16].

Furthermore, the components of the stress volume can be separated in the tension V+ and the
compression V− contributions, so that V = V+ + V−, which constitute a very useful expression for
some calculations.

Maxwell’s and Michell’s theories are outlined in Table 1, in which names and definitions are
proposed by the Authors of this work. Additionally, a more detailed description can be found in [19].
Maxwell’s findings are summarized from Definition 1 to Lemma 4 in the table. Michell’s findings
come from Lemma 8 and his two fundamental theorems, 9 and 10. From Michell’s Lemma 8, the
geometrical volume of a fully-stressed truss is V = V+/f+ + V−/f−, where f+ and f− are the
allowable stress of tension and compression respectively. In fact 1/f is the geometrical volume
per unit of stress volume, i.e., 1/f+, 1/f− are unitary costs. A similar definition can be given
for structural weight (being the unitary costs ρ+/f+, ρ−/f− and denoting ρ the specific weight of
materials used), embodied energy of materials, etc.

In his article, Michell develops the examples considering the geometric volume as the functional
to be minimized. However, in the sequel the stress volume V will be used following Michell’s lemma
(lemma 8). The main reason for using said functional is that with Corollary 6 the search for the
optimal truss can be stated in short as :
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Table 1. The Maxwell-Michell theory, contemporary nomenclature and definitions

Definition 1. Maxwell problem: To find a
feasible structure for a given set of known, ex-
ternal forces in equilibrium. Each external force
must be determined in position, direction and
magnitude. (Maxwell [6, pp. 173, 176–177])

Definition 2. Maxwell structure: Any set
of internal forces —defined by their magnitude ‘e’
(taking compression as negative) and their two
application points, being ‘ℓ’ the distance between
them—, such that added to the external forces of
a structural problem to form a complete set of in-
ternal and external forces, this latter satisfies that
every subset of all the forces acting at the same
point has a nil resultant. (Maxwell [6, p. 161])

Definition 3. Maxwell number M of a

Maxwell structure: The negative of the vir-
tual work done by the internal forces when the
space undergoes a homogeneous deformation that
reduces it to a point, M =

∑

i
eiℓi =

∫

e dℓ.
(Maxwell [6, p. 177])

Lemma 4 (Maxwell’s Lemma). The
Maxwell number of all the structures that solve a
given Maxwell problem is constant. (Maxwell [6,
p. 177]; Michell [1, Eq. (1)]; Owen [17, p. 50:
‘static constant’])

Definition 5. Stress volume V of a struc-

ture: V =
∑

i
|ei|ℓi =

∫

|e|dℓ

Corollary 6. The Maxwell number is the dif-
ference between stress volumes of tension and
compression, M = V+−V−. (Maxwell [6, p. 176];
Michell [1, Eq. (1)])

Corollary 7. In any Maxwell problem, any
feasible variation of a feasible solution is such

that the variation of tension volume equals the
compression one: δV+ = δV−. (Parkes [18,
p. 163])

Lemma 8 (Michell’s Lemma). For any
cost Ci defined as Ci = k+V++k

−
V− with k+ ≥ 0,

k
−

≥ 0 and k++k
−

> 0, δCi = 0 ⇔ δV = 0 holds
for a Maxwell problem, i.e., the solution of min-
imal V will be of minimal Ci. (Michell [1, Eq.
(3)]; Hemp [8, p. 4, Eq. 7].)

Michell’s theorems
Let ∆ be a finite, strictly positive strain. Let
D be the set of bounded, continuous displace-
ment fields d such that the strain εd of the field
d at all points and directions of the considered
domain, Ω, fulfils |εd| ≤ ∆d. Let S be the set
of all Maxwell structures for a Maxwell problem
enclosed into Ω.

Theorem 9 (Michell’s first theorem).

∀(d, A) ∈ D×S :
W d

∆d

≤ V(A) (1)

where W d is the virtual work of the given external
forces of the Maxwell problem when the domain
Ω undergoes the displacement field d. [1, p. 590].

Theorem 10 (Michell’s second theorem).
If a pair (T, M) ∈ D×S exists for Ω, such that
εT

i
eM

i
= ∆T |eM

i
| for every member i then ‘the

truss M attains the limit of economy of material’
in Ω, V(M) ‘is a minimum, and consequently
from [Michell’s lemma] the volume of material in
the frame M is also a minimum.’ [1, p. 591].

Find min(V+ + V−) subject to V+ − V− = M, for the given constant M.

Any other cost Ci for unitary cost k+ and k− is defined for each solution as:

Ci = k+V+ + k−V− (2)
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and can be computed from V (of a Maxwell structure) and M (of the Maxwell problem) as [2,
p. 87, Eq.(121)]:

Ci =
1

2
{(k+ + k−)V + (k+ − k−)M} =

k+ + k−

2
V
(

1 +
k+ − k−

k+ + k−

M
V

)

(3)

The key point here is that an optimal Maxwell structure for V is also an optimum for any cost
Ci. That is, an optimal Maxwell structure for V will be of minimal volume or weight independently
of the allowable stresses or the specific weights of materials; hence, its shape will be the same shape
for any cost Ci [2, p. 116]

Moreover, Michell identifies a condition that makes the volume of a structure that solves a given
Maxwell’s problem to be an absolute minimum in the geometrical domain in which alternative
structures can exist, which is summarized in Theorem 10. After that, he shows certain types of
structures that fulfil the indicated condition, showing a geometric condition for non-trivial frames:
‘. . . those whose bars, both before and after the appropriate deformation, form curves of orthogonal
systems’.

Is Michell’s second theorem an optimality criterion? That is, is this theorem (number 10 in
Table 1) a necessary and sufficient condition that must fulfil an optimum? In order to answer this
question, the requirements to fulfil it are examined. Michell’s optimal condition in Ω requires:

1. a finite boundary strictly positive ∆T for the field T , and
2. εT

i eM
i = ∆T |eM

i | fulfils by all members of the structure M .

Since Michell does not offer any proof of the existence of a pair (T, M) for every set of given external
forces in equilibrium, he only considers his condition as a sufficient one [1, p. 589][20, p. 13,70ss]. In
spite of a sustained research effort on this subject, it has not been proven that Michell’s condition
is also a necessary one [see 21, 22, 23]. Highlighting the fact that this argument refers only to
Michell’s original condition for Maxwell’s problems.

Given a Maxwell’s problem, finding the pair (T, M) is not generally a straightforward task.
Firstly, a structure M has to be found. Secondly, proving that M is optimal requires finding a field
T so the pair fulfills Michell’s theorems. Thirdly, if a field T is not found, proving that the claimed
M is not optimal requires finding a better structure.

In the last part of his article, through the application of the mentioned theorems and condition,
Michell shows which are the optimal forms for some Maxwell problems. It is worth noting again
that Michell’s theory is built on Maxwell’s theory, and thus, they have not defined supports or
kinematic conditions, but only a balanced set of external forces including reactions. It is worth
noting that this approach to the structural problem was customary at the time [see 24].

The resulting optimal structures are characterized by their orthogonality and by the existence
of continua regions with an infinite number of elements. Layouts based on Michell’s theorems and
condition, or with some similarities with those layouts —infinite number of bars, orthogonality—
become now a category, being known as ‘Michell trusses’, ‘Michell nets’, ‘Michell frames’, and so
on.

Rozvany et al. [25] declare: ‘classical Michell trusses are not practical because they usually have
an infinite number of members, ignore buckling, consider one load condition only, and are, as a
rule, unstable mechanisms. However, they constitute a classical field, which has been investigated
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by many researchers. Michell trusses are also used regularly as benchmarks for checking on the
validity of various numerical methods’.

4 HISTORICAL BACKGROUND

After its publication, Michell’s work remains unnoticed for about half a century until J. Foulkes
[26] tells H. L. Cox about the existence of this work [27, p. 156], who reads the article and realizes
its theoretical importance [see 28, p. 2][2]. In the following years, other researchers like Hemp [8],
Parkes [18] and Owen [17] begin to disclose and to arrange in a clear mathematical form the conse-
quences of Michell’s work. At the same time, a number of researchers formulate methods or present
demonstrations that constitute milestones in relation to structural optimization.

A first milestone was the demonstration by Sved [29] that the minimum weight truss for prob-
lems with redundant, kinematic conditions is a statically determinate one. This theorem will be
very useful in future research into this class of problems (to which Maxwell’s problem does not
belong). Sved, Australian as Michell, does not cite Michell’s findings.

A second milestone was the formulation of an optimality criterion for trusses of minimum weight
by Prager [30, 31], who introduces kinematic conditions in the problem so a necessary and sufficient
condition for optima can be attained [32].

A third milestone was the formulation of the ground structure method by Dorn, Gomory, and
Greenberg [33], which influenced many studies afterwards. Although this method was formulated
ignoring the work of Michell, the method shows how to find an optimal truss for problems restricted
to a finite number of bars. Generally, this optimal truss cannot be an optimum in Michell’s sense,
but the work necessary to find restricted optima was affordable for said times. Furthermore, this
method uses the standard structural analysis, with kinematic conditions, so its implementation is
a simple extension of existing codes.

In 1964, Frei Otto founded the Institute for Lightweight Structures at the University of Stuttgart.
His work and that of colleagues [15] on the “lightweight principle”, open a new branch in this sub-
ject, resumed in three main concepts, named TRA, BIC and LAN. The connection with Michell’s
approach is the first one: TRA is a measure of ‘load transportation’, distinguishing among several
types: e.g. external, internal and relative. The first type is defined as the summation of the prod-
ucts of the absolute value of the loads by its distance to the nearest support: TRAa =

∑ |Q||s|;
the second one is directly the stress volume: TRAi =

∑ |e| ℓ = V, being the relative TRA the quo-
tient TRAr = TRAi/TRAa = V ÷∑ |Q||s|. Actually, Otto and coworkers, without a direct knowledge
of Michell’s work—in [15], ‘Michell’ is ‘Mitchell’ and his work is dated in 1908—, also arrive to
Michell’s ‘quantity’. However, Maxwell’s lemma is ignored, so Otto’s formulation of structural de-
sign problem is not ever the same than that of Michell’s. The book by Otto and co-workers was
published in 1998, but as Otto says in the chapter ’Remarks on how this work came about’, his
work began much earlier, in 1946. Albeit little known, it can be considered as a very inspiring
manual about structural design ([34]).

In 1973, Hemp [20] presents an optimality criterion for minimal volume trusses, depending on
the allowable stresses of the materials in tension and compression, and subject to the kinematic
conditions imposed by the supports of the structure. A decade after that, in 1984, Rozvany [35]
presents a derivation of the Prager-Shield theory of optimal plastic design [36] using the notion
of ‘structural universe’, obtaining a relaxation of the conditions of the Michell strain field test in
some specific regions. Later, he introduces his ‘optimality criteria’, [e.g. 37], which confirms those
of Hemp. These optimality criteria, which conversely to that of Michell depend on the kinematic
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conditions of the problem, become the current point of view of most researchers, relegating the
Michell sufficient condition to a particular case of this new approach (or directly indicating an error
in Michell’s derivation—‘Rozvany demonstrated that there was an error in Michell’s derivation of
optimality criteria’ [38]—). However, actually, there are no shortcomings in Michell’s theory, as
discussed below.

In [19], extensions to include friction forces and dumped mass were suggested and managed. In
[10, Ch. 5] an extension of Michell’s theory to tackle with the self-weight as load considering catenary
bars with constant cross-section was proposed (first published in [39]). A similar extension but with
constant stress —and variable cross-section— was independently proposed in [40]. Recently the
latter was used to research into optimal forms for bridges with self-weight load, several types of
foundations, and dumped mass [41], for both fixed boundary and free load classes of problems,
including friction forces.

According to Google Scholar, Michell’s article has been cited 1768 times, which gives a rough
idea of the amount of research invested on the subject. Despite this, the analytical solution for the
optimal forms have only been found for a small set of simple problems. An extensive account of
this effort can be found in the book by Lewiński, Sokół, and Graczykowski [42].

As shown throughout this review, finding the optimal solution for well-posed structural design
problems is not a straightforward task. For that reason and with the day-to-day work in mind,
some researchers have adopted the identification of the range in which very good solutions would be
found as their main target, abandoning the search for optima [see, v.g., 19, 43, 44, 45]. Although
these approaches are not the objective of this review, they are mentioned herein because of the
advance they represent in practical terms.

5 THEORIES FOR PROBLEMS WITH KINEMATIC CONDITIONS

Prager [30] reformulates the problem of Michell [1] looking for minimal weight as follows:

Consider a truss structure able to carry the required set of forces with stresses in the
tension members equal to f+ and stresses in the compression members equal to −f−. The
weight per unit volume of the material used for the tension members is ρ+ and of the material
in the compression members is ρ−. If, when the tension and compress members are subjected
to virtual strains ε+ = (f · ε/ρ)(f+/ρ+) and ε− = (f · ε/ρ)(f−/ρ−), respectively [note that
f = 1

2
(f+ +f−)], the resulting displacements satisfy the kinematic conditions imposed on the

structure by its supports and any constraints that may exist on the permissible movement
of supported loads, and no direct strain in the space within the structure lies outside these
limits, then the structure has least weight of all competing structures. [32][46, p. 1783]

Hemp [20] reformulates the problem looking for minimum volume, not for minimum weight, as
follows:

A pin-joined framework has the least volume of material, if it can carry its given forces,
with stresses in its tension members equal to f+ and stresses in its compression members
equal to −f− and if a virtual deformation of a region of space, in which the competing
frameworks must lie, satisfies the kinematic conditions imposed on the framework[s] and
gives strains of f · ε/f+ in its tension members, strains of −f · ε/f− in its compression
members and has no direct strain lying outside these limits.
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The subtle differences with Michell’s theorems are that in this theory the problems present
kinematic conditions and ,as a consequence, there are two different absolute values bounding the
virtual deformation. Despite that Hemp says that the above description is the ‘Michell’s sufficient
condition’, in fact, it is not. This fact is surprising when Hemp’s work of 1958 [8] is compared with
the latter. In [37], Rozvany offers a personal, detailed description of the evolution of Hemp’s ideas
about this subject.

In both formulations there is no equilibrium condition over the given forces, so there are no
Maxwell problems (definition 1) and Maxwell’s Lemma does not hold (lemma 4). Furthermore,
the cost of the supports is not considered and, consequently, the optimal solutions obtained from
these three different criteria for equivalent problems are different. In fact, the optimal shape for a
structure with the same kinematic conditions will be different for each cost definition (Ci) [46, 47];
which constitutes a crucial difference with Michell’s results.

Therefore, within this framework, in order to take into account the basis of all the theories
and following Cox [2], two different types of structural problems can be defined depending on their
target.

On the one hand, the ‘free loading’ problems, that corresponds to the named Maxwell problems,
i.e. the reactions are known or designed—assuring external equilibrium— and are independent of
the structure layout. Designing reactions is a normal practice in limit analysis, although that is
done by means of the prescription of some internal forces in beams (see, v.g., Heyman [48, ‘reactant
line’]).

On the other hand, the ‘fixed boundary’ problems, which present imposed kinematic conditions,
and thus, in general, with unknown reactions that must be determined by structural analysis as
usual, with values depending on the layout.

It is worth mentioning that both classes are not completely separated sets, as they share a
common subset of problems: those which within the fixed boundary approach present statically
determinate kinematic conditions. Nonetheless, Michell’s theory uniquely applies to the free loading
approach, and the shortcomings presumed by others authors are derived from an incorrect attempt
to apply it to problems depending on kinematic conditions.

The researchers that rediscover Michell’s theory have already warned of the different nature of
these two approaches:

This result suggests that in some design problems a lighter structure might be obtained by
adding loads to make the best ‘minimum’ structure possible, rather than by using a Michell
structure. It must be remembered, nevertheless, that the reactions such as those at [fixed
supports], are in any case carried by some other bodies acting as structures and the true
picture of the economy achieved should include the abutments (i.e. their cost). (Owen [17,
p. 64])

When the supports are actually fixed, the nature of the design problem is vitally altered.
The direction of the reactions at the supports are then determined in part by the structure
itself, so that

∑

F̄ir̄i is variable [herein M], and Clerk Maxwell’s lemma, where still true,
is of no use. (Cox [2, pp. 95–96])

The fact that constitutes the main drawback of the ‘fixed boundary’ class is that the support cost
is different for each solution, and thus, the comparison between the costs of the solutions is not
possible when solely taking into consideration the cost of the structure it-self and ignoring the cost
of the imposed kinematic conditions. Rozvany and Sokół [49] extends the optimal layout theory of
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(b) Free load version

P
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(c) Fixed boundary version

Figure 1. Comparison of the three approaches.

Prager and Rozvany [7] trying to fill this shortcoming, although it seems that the simple case of a
foundation with friction forces is not covered by this extension [50].

The drawback with Michell’s approach is that for representing all the cases of Hemp or Prager’s
approaches an infinite set of Maxwell’s problems have to be considered for each set of definite
reactions.

A very simple example will show the differences between the three approaches. Consider the
problem of suspending a new weight P in the middle of a floor in a multi-storey building, see
Figure 1.

The up and down beams have been designed for a load Q and so they were built. For a span of
6 m, Q will be of the order of 360kN. The new load P is 1

6
of Q and will diminish the safety of the

beams. The upper cable is made of steel and the bottom strut is made of wood. The proportion
f+ ÷ f− will be approx 17, and the proportion ρ+ ÷ ρ−, 10. Note that the feasible solutions are
not statically determined.

In Michell’s realm, the reactions will be fixed to P/2, so both beams have to support equal
weight, and the reduction of safety will be equal for both, by a factor of 12

13
≈ 0.92. The cable and

strut solution is the optimum. The stress volume is Pa; the Maxwell number is zero; the volume

will be Pa

(

1

f+

+
1

f−

)

=
18

17f−
Pa; and the weight will be Pa

(

ρ+

f+

+
ρ−

f−

)

=
27ρ−

17f−
Pa.

In Hemp or Prager’ realms, the optimal solution is the cable alone, with a volume of
1

17f−
Pa

in Hemp’s realm, lesser than Maxwell’s volume, but now the upper beam will be overloaded with
P , so it will lessen its safety by a factor of 6

7
= 0.86. In Prager’s realm, the optimal solution has a

weight of
10ρ−

17f−
Pa, lesser than Maxwell’s weight, but now the upper beam will be overloaded again

with P .

The self-weight of solutions with normal steel and wood will be approximately 4 thousandths
of Q. The optimal solution selected will depend on the purpose of the designer.
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6 EXAMPLES

In the sequel, via three examples, the relative importance of the outlined differences between
competing approaches to the structural design in terms of cost and structural shape will be evalu-
ated.

6.1 Illustrative example of Rozvany in an article of 1996

In the article ‘Some shortcomings in Michell’s truss theory’, Rozvany looks for an explanation of
the discrepancy between Michell’s and Hemp’s criteria Rozvany [37]. For this reason, he reproduces
Michell’s Eq. (2) exactly, which gives the geometrical volume of a full-stressed truss, speaking of
‘any statically determinate truss’ (p. 244).

V+

f+

+
V−

f−
= V (4)

Nevertheless, it should be stressed again that Michell always works with given external forces in
equilibrium, without any mention of kinematic conditions nor does he refer to any static condition
for the competing frames.

After that, Rozvany [37, p. 244] adds that ‘the volume [of the truss] can also be calculated by
means of the “dual formula”’.

V =
1

2

(

1

f+

+
1

f−

)

· V (5)

Furthermore, Rozvany also argues that ‘Examples of these volume equations are given by Michell. . . ’;
which is true except in Michell’s example 3 [1, 596–597, Fig. 4] as its corresponding equation does
not fulfill the equation (5). On the contrary, said example shows clearly the general equation. This
equation, which gives the volume as a function of stress volume and Maxwell number, has been
well established by many authors (e.g., Hemp [8, 4, Eq.(7)] Cox [2, 87, Eq.(121)], etc) as that of
Michell’s Lemma (lemma 8), Eq. (3) herein, see page 5.

Note that if either M = 0 or f+ = f− are fulfilled, the Michell equation (3) leads to Rozvany’s
‘dual formula’ Eq. (5), i.e., Rozvany’s equation is a particular case of the Michell equation. This is
why this equation appears in many of the examples of Michell’s original article (in these examples
M = 0).

Rozvany [37] attempts to show in section 3 of his own article an ‘illustrative example’, see
Fig. 2 and Table. 2, however it is rather misplaced due to it having displacement constraints (a ‘fixed
boundary’ problem) so Michell’s theory is not applicable. Moreover, Rozvany uses (5) with unequal
allowable stresses, but by coincidence, the Maxwell number of the conjectured Michell truss is null
in the selected example—Rozvany [37, Fig. 1b], from Prager and Rozvany [7, Fig. 1]—, so he has
no chance to detect any discrepancy between his primal and incorrect dual formulae. Unfortunately
as Rozvany’s purpose is ‘to provide a constructive explanation of the apparent discrepancy between
Hemp’s and Michell’s criteria’. While with this inadequate equation in mind, Rozvany states that
the ‘discrepancy’ is not ‘apparent’, because in fact in his view it exists. Therefore the ‘critical
examination of Michell’s proof’ in section 4 of Rozvany’s article makes no sense as it is based on
all these misunderstandings and mislead outcomes of the unique example that Rozvany considers.
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His conclusion is that ‘for unequal permissible stresses Michell’s optimality conditions are only
valid for a highly restricted class of support conditions’ and that Michell ‘was not aware of the
limits of validity of his theory’. However, when reading Michell’s paper and examining his examples
carefully, it is clear that Michell understood the profound, general meaning of Maxwell’s findings.

It is worth examining in detail the illustrative example mentioned. The original, fixed-boundary
problem (Figure 2(a)) consists in how to translate a vertical useful load P to a wall a horizontal
distance L apart.

Rozvany [37, p. 245] derives an optimal solution from Michell’s optimal condition, see Fig. 2(c),
despite that this condition is not applicable here as the problem is not of Maxwell type. (For this
solution M = 0.)

Anyway Rozvany found that Hemp’s criterion leads to a better solution (Fig. 2(d), with M =
2/

√
3). Rozvany neither calculates M —as Authors do—, so he could not notice or realise that the

two solutions are not commensurable by V in the scalar metric proposed by Maxwell and Michell.
If Hemp’s solution was assumed to be the best one, a question would arise again: what is the cost
of the mechanical role of the wall?

In order to answer this question, a simple Maxwell problem could be this one: to transport
horizontally the load from the point A to some point of the wall, say to B (Fig. 2(b)). It is suggested
that the reader imagines a symmetrical frame into the wall, adds this to the original, and operates
with the 2-load resulting frame and dividing any metric result —M, V, volume, etc.— by two at
the end.

The cost of transporting a part of the load from the upper joint —in the wall— to B is the cost of
BU member, and conversely from the bottom, the cost of DB. Making the appropriated corrections
it results that M = 0 in both solutions (i.e., they are now commensurable in Maxwell’s world), the
volume of the solution ‘1b’ (Fig. 2(c)) is proportional to 6, and the volume of ‘1c’ (Fig. 2(d)) is
greater, proportional to 13/

√
3 ≈ 7.51 (the optimal value, is proportional to 2 + π/2 ≈ 3.57), being

both proportional to the respective values of V, since M = 0. See table 2 for a detailed account.

What is the discrepancy? From the Authors point of view, there is none! Hemp’s criterion
operates on non-Maxwell problems and Michell’s criterion on Maxwell ones. In other words: Hemp’s
criterion is useful for problems in a restricted environment as could be domestic housing, where
walls are specified for acoustic or insulation conditions or other non-structural requirements and are
supposed to have enough strength for any ‘domestic’ load. However, Michell condition is relevant
for usual engineering problems, where the wall, as a boundary condition, is a convenient trick for
the structural analysis, denoting a symmetric axis or so; or generally speaking it will be defined,
analysed and checked for structural requirements. Indeed, this process gives as a result the cost of
the wall—the BD and BU members cost in our version—, which constitutes a significant part of
the whole cost of the structure.

6.2 Parabolic arches

In this example, the problem under consideration is the design of a bridge with a horizontal
row of length L, suspended from a parabolic arch with a funicular layout, see Figure 3. The arch
is supposed to be compressed without bending action. The only applied load is a uniform one, w,
considering negligible self-weight. The curve of the parabolic arch is:

y(x, h) = h ×
{

1 −
(

x

L/2

)2
}
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L

P

A
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(a) Rozvany’s problem

L

P

A

−P

PL B

(b) Related Maxwell’s problem

AB

U

D

L

L

√
2L,

√
2P/2

√
2L, −

√
2P/2

L, P/2

L, −P/2

(c) Solution ‘1b’

AB

U

D

√
3L

L/
√

3

4L/
√

3

2L,
√

3P/2

2
√

3L/3, −P/2

ML/
√

3, P/4

√
3L, −3P/4

(d) Solution ‘1c’

Figure 2. Illustrative example after Rozvany [37]. Top, the two problems. Bottom, two solutions
(original Fig. 1b and Fig. 1c in [37]); for each member the (l,e) couple is given; note that the two figures of the frames
are at the same time the vectorial polygons of forces, i.e., if in (d) the scale of the drawing is such that DU=P , the
internal force of each member can be measured directly in the drawing. P is the ‘useful load’ and L the problem’s
size. For Rozvany’s problem the design has only two members: AU and AD; the simplest Maxwell’s Frame has at
least four, i.e., BU and BD must be added. The allowable stress is f in tension and f/3 in compression, hence
k+ + k− = 4/f and k+

−k− = −2/f must be used in Eq. (3).12
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Table 2. Data for the problems and designs of Fig. 2

Design: Fig. 2(c) Fig. 2(d)

Members’s data: V+(AU) PL
√

3PL

V+(BD) 1
2
PL 1

12

√
3PL

V−(AD) PL 1
3

√
3PL

V−(BU) 1
2
PL 3

4

√
3PL

Rozvany’s problem: V 2PL 4
3

√
3PL

M 0 2
3

√
3PL

volume 4P L
f 2

√
3P L

f

Maxwell’s version: V 3PL 13
6

√
3PL

M 0 0

volume 6P L
f

13
3

√
3P L

f ≈ 7.51P L
f

VUBD

V
1

3

5

13

L

2

L2

8h

L

2

L2

8h

L

h

Figure 3. Parabolic arch

Without bending action, the horizontal component of the internal force in the arch is
wL2

8h
and

constant, therefore, the internal force in the arch is:

earch =
wL2

8h
×
√

1 + y′(x, h)2

13



Unpublished work Authors’ edition, 2022

Table 3. Optima for “classic” arches

f+

f−

hopt

L

Vopt

wL2 ÷ f−

Hopt

wL

0.20 0.176 1.414 0.707

0.40 0.231 1.080 0.540

0.60 0.265 0.942 0.471

0.80 0.288 0.866 0.433

1.00 0.306 0.816 0.408

2.00 0.353 0.707 0.353

3.00 0.375 0.666 0.333

4.00 0.387 0.645 0.322

5.00 0.395 0.632 0.316

and the internal force in vertical ties will be w, measured by unit of length.

For the sake of brevity, it will be assumed that the ground is as strong as the structural
material. Therefore there is no need of foundation in respect to the vertical reaction, only of
appropriate connections between the structure and the ground considering the horizontal reaction.
Furthermore, it is assumed that the connection is for simple contact, i.e., the friction force between
the arch and the ground will equilibrate the horizontal reaction.

6.2.1 A classical approach: optimization of material volume

If the compression material has an allowable stress f− and the tension material, f+, the material
volume of arch and vertical ties will be at least:

V (h) =
1

f−

wL2

8h
×
∫ L/2

−L/2
(1 + y′(x, h)2) dx +

1

f+

∫ L/2

−L/2
w × y(x, h) dx

taking into account the arch and the vertical ties. This problem was studied by many authors (see,
v.g., [51, 52]).

Considering as a fixed boundary problem, with pinned supports at both edges of the arch, the
minimal material volume is obtained from ∂V (h)/∂h = 0:

hopt =

√
3

4

√

f+

f+ + f−
L

14
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In Table 3 the optimal height and other parameters are shown for some values of f−/f+. As it is
obvious for the expression for hopt, the optimal proportion of the arch, h ÷ L, varies with f− ÷ f+

, as does the horizontal reaction.

The problem with this approach deals with the cost of the horizontal reactions. Consider
a friction coefficient µ between the arch and the support surface. A horizontal reaction up to
µwL ÷ 2 will be free-of-cost. A normal value for µ is, v.g., 0.3, so a horizontal reaction up to
0.15wL does not change the above results. But this figure is surpassed in all cases of Table 3. So
the cost of the horizontal reaction matters.

It is worthwhile examining an actual example as the Akashi Kaikyo Bridge [53, 54] . The
total load (useful load plus self–weight) is about 2 200 MN with a total length of 3 910 m. The
anchorage of main cables is of gravity type: gravity anchorage relies on the mass of the anchorage
itself to resist the tension of the main cables, i.e., on friction between foundation and soil. Due to
the designed shape, the required anchorage horizontal force at both ends is about 920 MN, and it
was obtained with abutments. The anchorage body has about 140 000 m3 of concrete, i.e., about
3 100 MN of weight, and that means a net friction coefficient of about 0.32. That means that the
weight cost of horizontal reactions, 6 200 MN, is 1.59 times the weight of the bridge.

Returning to the parabolic arch, the case f− = f+ is studied. Assume, for example, V (0.4L) =
0.85 × wL2 ÷ f− and H(0.4L) = 0.31 × wL. Is this solution worse than the claimed optimum
h = 0.306L? In fact, if the horizontal reaction cost is null, it is. In any other case, it depends on
this cost as the claimed optimum requires a greater reaction, 0.40 versus 0.31, or 0.25 versus 0.16
taking into account the free friction with µ = 0.3.

6.2.2 A Maxwell-Michell approach: optimization of the stress volume
In the sequel, the Maxwell-Michell approach is used again. The geometry and internal force of

the arch are the same aforementioned. The stress volume of the arch will be

Varch(h) =
wL2

8h
×
∫ L/2

−L/2
(1 + y′(x, h)2) dx

The reactions at the two ends of the arch are a vertical external force R = wL/2 and a horizontal

one
wL2

8h
. The suspension, vertical ties to transmit w to the arch needs a stress volume equal to:

Vv(h) =

∫ L/2

−L/2
w × y(x, h) dx

The design problem corresponds to an infinite number of Maxwell problems: one for each
selected set of reactions. Of course, the vertical reaction is fixed, R, but the designer can select any
value for the horizontal reaction on the whole structure, namely H. Considering a set of Maxwell
problems depending on a parameter α, such that the horizontal reaction would be prescribed as
H = α × R in each problem belonging to the set.

As the friction is free-of-cost, H will be free-of-cost up to a value µ × R where µ is the friction
coefficient. The cost of the rest of H above this value depends of the very design of the support.
For simplicity, assessing this cost as similar or proportional to the cost of a virtual tie (or a strut)
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of length L with internal force of abs (H) − µ × R. The stress volume of the reactions can be [so](1)
computed as

VH(h, α) =

{

0 if abs (H) ≤ µ × R
(abs (H) − µ × R) · L any case else

If the arch and vertical ties were to be a Maxwell structure, the reaction at the two arch ends

must have the components R and
wL2

8h
, see above. So if H 6= wL2

8h
, the structure needs a real

horizontal bar, tie or strut—which is different from the virtual bar used for estimate the reaction
cost—, with a stress volume:

Vh(h, α) = abs

(

H − wL2

8h

)

× L

Thus, a simple optimization problem stems:

min
h,α

V(h, α) with V(h, α) = Varch(h) + Vv(h) + Vh(hα) + VH(h, α)

Note that this formulation is general. Although, of course, the definition of the cost of the
horizontal reaction H, VH(h, α), is tentative: other models will lead to different results. The
optima obtained with Cobyla algorithm [55] are shown in Table 4. The important points are these:

1. The optima do not depend on the allowable stresses, not the height h neither the optimal
reactions, α × wL ÷ 2. Of course the material volume will be different for different materials,
but not the shape that solely depends on the friction coefficient, µ.

2. For friction lesser than µ = 0.5, the design criterion is simply: take a height of
√

3L ÷ 4 and
design the reaction H according to the reaction that a funicular arch requires, discounting the
friction part of the reactions cost.

3. With very high friction, µ > 0.9, as the reaction H is free, take the height that optimizes the
arch and vertical ties cost.

4. With medium friction, there is no clear criterion so one has to explore via many Maxwell
problems.

5. There are no coincidences between the two approaches (compare Table 3 and 4).

6.3 Hemp’s arch for uniform load

Hemp [56] proposes a parametric layout for the problem of minimal volume with uniform load
w between two pinned supports, i.e., a fixed boundary problem. Nowadays, this problem is known
as the ‘optimal girder problem’ [42]. In this reference, there is a very comprehensive review of
the numerical or analytical solutions obtained till now: numerical solution for the case f+ = f−

[42, section 4.16.2], analytical solution for the case f+ = f− [57], analytical solution for the case
f+/f− ≤ 0.4177 [47]. Recently general, near-optimal layouts has been proposed, [see 43, 19].
Currently, there is no known general, analytical, optimal solution for this problem, although.
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Table 4. Optima for “total cost” arches, including reactions cost.

(Vstr = Varch + Vv + Vh). Compare results for µ ≥ 0.90 with those of Table 3 corresponding with
f+/f

−
= 1.

µ hopt/L αopt Vopt/(wL2) Vstr/(wL2) VH/(wL2)

0.00 0.433 0.430 1.154 0.939 0.215

0.10 0.433 0.430 1.104 0.939 0.165

0.20 0.433 0.430 1.054 0.939 0.115

0.30 0.433 0.432 1.004 0.938 0.066

0.40 0.433 0.439 0.954 0.935 0.019

0.50 0.433 0.542 0.904 0.883 0.021

0.60 0.412 0.606 0.856 0.852 0.003

0.70 0.290 0.860 0.897 0.817 0.080

0.80 0.287 0.869 0.852 0.818 0.034

0.90 0.285 0.876 0.818 0.818 0.000

1.00 0.285 0.876 0.818 0.818 0.000

The Hemp layout, see Fig. 4, consists of an arch, OAB, vertical hangers (as DE) between the
curve ODB and the line OM, and a family of orthogonal arches and curved hangers (as OC and
AD) into the region OABDO. The main parameter is the slope of the arch at O, φ1, that is
determined with the condition that a displacement field exists such that the absolute deformation
of all the members is equal and its sign equal to the corresponding internal force, i.e., a fully-
stressed design. Hemp determines its value when the allowable tensile and compressed stresses are
equal. He concludes that his solution, albeit better than the traditional one with parabolic arch and
vertical hangers, is suboptimal because it does not fulfil his own optimality criterion [20], since the
maximum absolute strain somewhere in the field is greater than this value in the members. Pichugin
et al. [47] generalize Hemp’s equations for any ratio of the allowable stresses, f+/f−, showing that
for f+/f− ≤ 0.4177, the resultant layouts from the Hemp family are absolute optima, according to
Hemp’s criterion.

The method of Pichugin et al. [47] can be summarized as follows: for each value of f+/f− ∈ [0, 1],
the value of φ1 is the numerical solution of their Eq. (17). Then, the height h of the solution is
determined with their Eq. (6) and finally the volume of material is computed with their Eq. (39).
Remember that these values are also optimal if f+/f− ≤ 0.4177, for the ‘fixed boundary’ problem.

The pinned supports are at the point O and at its corresponding symmetrical point with respect
to the MB line. For each feasible solution φ1 there is a vertical reaction Y = wl, being l the half-
span, and the horizontal reaction X can be determined by simple equilibrium equations of the
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Figure 4. Half-span of the parametric layout proposed by Hemp [56]. The dotted line ODCB is the

boundary between the region occupied by the vertical hangers and the region occupied by the orthogonal net of curved bars.

half-solution:

X =
wl2

2
· 1

h(φ1)
= Y · l

2h(φ1)
(6)

Therefore, the angle α and magnitude R of the oblique reaction at O will be:

α(φ1) = arctan
l

2h(φ1)
R(φ1) =

wl√
1 + tan2 α

(7)

As the reaction in the pinned supports depends on φ1, the optimal design problem (coupled
with the mathematical problem of Hemp) can be stated as ‘finding a solution φ1 with minimal
volume, i.e., minimal sum of the foundation volume and the arch volume.’ (Outlining that herein
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Table 5. Feasible solutions for Hemp’s arch problem

Comparison for two solutions with f+/f
−

= 0.2 and prismatic foundations orthogonal to reactions (soil
cohesion equal 0.002f

−
, internal friction angle of 28o, w/(f

−
l) = 0.0001).

Solution φ1 (o) h/l
Varch

wl2/f
−

X/wl R/wl α (o)
Vabutments

wl2/f
−

Vtotal

wl2/f
−

PTG 38.872 0.36648 5.5887 1.3643 1.9650 53.760 16.302 21.891

Hemp 63.126 0.67687 6.5117 0.7387 1.5955 36.452 5.7580 12.270

‘arch’s volume’ stands for the whole pinned structure, that is the arch, the fan and hangers families
and the bottom tie in the cases of hangers not being vertical.) The functional to be minimized is
then:

Vtotal = Vabutments(R(φ1), α(φ1)) + Varch(φ1) (8)

To this end, the shortcoming of the theory of Hemp [20] is simply that the volume of the
foundations is not counted in any way, so generally a solution of minimal structure volume, but of
sub-optimal overall volume, can be found.

According to this, two special cases must be distinguished: (i) For problems of very small size,
the design of abutments will be restricted to minimal dimensions for practical reasons and Vabutments

will be constant. (ii) For a Maxwell problem, R and α are constant and so Vabutments.
In the case (i) it can be considered a constant abutment so Hemp’s theory is applicable—

providing that the minimal abutment will have enough support capacity— and the optimal shape
will vary with f+/f− [2, p. 116]. For this case the solutions of Pichugin et al. [47] has practical
interest because some kind of ‘existing structure’ is used, as Cox named the given abutments.

In the case (ii), it is also possible to consider a constant abutment but Hemp’s theory is not
applicable, as the condition of constant reaction is incompatible with kinematic support conditions.
However, recalling Michell’s original theory, the optimal shape will be independent of f+/f− , just
depending on R and α. In this case the equations of Pichugin et al. [47] to determine the optimal
value for φ1 are not appropriated.

For any other case, the two volumes must be taken into account and for the time being there is
not a sound optimality-criterion theory for this target. This is the case with normal bridge design,
where abutment shape is part of the whole design problem. Anyway, Michell’s theory can be useful
for each pair (R, α). So the practical design problem corresponds actually to a set of Maxwell’s
problems, each defined by a couple (R, α), i.e., the Michell formulation can help to determine
optimal solution for each (R, α), but the designer has to look for the optimal (R, α) comparing the
optimal Vtotal of each Maxwell’s problem in the set.

Hereafter, only the total volume of two feasible designs is computed, illustrating that the optimal
solution for the fixed boundary problem is not the optimum for the design problem.

6.3.1 Volume of the arch in a simple case
Let be f+/f− equal to 0.2. If φ1 is the claimed optimal value for the given f+/f−, the Eq. (39)

from [47] to calculate Varch(φ1) can be used.
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Each value of φ1 defines a Maxwell problem (R, α), and the two well-known equations of Corol-
lary 6 and Michell’s Lemma (Lemma 8) can be used:

V+(φ1) − V−(φ1) = M(φ1);
V+(φ1)

f+

+
V−(φ1)

f−
= V (f+, f−, φ1) (9)

being M(φ1) = −2 · X(φ1) · l. Then, knowing the volume for any ratio f+/f− and corresponding
φ1, from (9) the stress volume can be computed:

V+(φ1) =
f−f+V (f+, f−, φ1) + f+M(φ1)

f+ + f−

V−(φ1) =
f−f+V (f+, f−, φ1) − f−M(φ1)

f+ + f−
(10)

Therefore, the procedure will be as follows: for each φ1 and with the ratio (f+/f−)opt for which
φ1 is optimal for the original problem of [47], computing Vopt with Eq. (39) of [47], X, R and α with
Eqs. (6) and (7) here, and V+ and V− with Eq. (10). Finally, with the ratio f+/f− = 0.2 computing
the corresponding volume Varch with the second of (9). This procedure shows that analytical results
from fixed boundary problems can be useful for the corresponding free load version.

6.3.2 A model for the foundation

In order to evaluate Vtotal with (8) it is necessary to establish a model for the foundation. A
standard, simple model with the same material as the structure, and with a standard cohesive soil
will be used. The abutments will be a simple, prismatic body of base A and depth d; it will have a
square contact surface A = a×a orthogonal to the direction of R, i.e., this surface has a slope tan α
with the horizontal plane. The standard soil has an effective cohesion of 0.002f− and an effective
stress angle of internal friction of 28o.

Then, the allowable stress of the soil under foundation is [58, Art. 4.4.7.1.1.8]:

σS ≈ f−(0.0212α2 − 0.0798α + 0.0693) = f− × FS(α) (11)

being α expressed in radians and accounting only the cohesion term to keep the model simple.
The term due to specific weight of soil depends on the value of R and to add it leads to the same
conclusion that Authors get later, but increasing the difference of volumes between the solutions
analysed. Whereas, the term due to overburden pressure is zero as foundations considered are
superficial.

The side of the square base is a =
√

R/σS , and the depth must be d ≥ λa, being λ a constant
for each shape dependant on the ratios σS/f− —given by (11) for each α(φ1)— and f+/f−:

λ =

√

Φ
σS/f−

f+/f−
with f+/f− ≤ 1 (12)
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being Φ a shape factor, equal to 3 for a prismatic foundation. Notice that although the prismatic
body is a sub-optimal shape, using an optimal shape will only change Φ and being this factor
independent of R or α, this change would decrease the cost of foundations by the same factor,√

Φ, for all feasible solutions. Hence the use of the prismatic body has no influence on the already
presented argument and keeps the example simple.

Additionally, expressing Vabutments in terms of wl2/f−:

Vabutments =
wl2

f−
·
{

2
√

3

FS(α)

(

R

wl

)
3

2

√

w

f+l

}

(13)

As the volume of foundations depends on the ratio w/(f+l) = w/(f−l)/(f+/f−) the ratio w/(f−l)
must be fixed to be able to compare different solutions.

6.3.3 Comparison of two designs
According to [47] the method, labelled ‘PTG’ in table 5, provides the ‘optimal’ solution with

respect to the volume of the arch. This ‘optimal’ solution is completed by the Authors with the
volume of the foundations calculated with (13), with a value of the ratio w/(f−l) equal to 0.0001,
corresponding with w = 100kN/m, l = 100m and f− = 8 800kPa. The volume of the foundations is
almost three times the volume of the arch, namely, the cost of the foundations cannot be ignored.

Volumes, according with Hemp’s original layout, have also been computed. Results, as expected,
show that the volume of the arch is greater than the one of PTG solution, but being the reaction
R and the angle α lesser, the foundation volume results lesser too. As a result, the total volume of
the ‘Hemp’ design is 56.1% of the PTG one: the former is better than the latter. It is clear that
the latter is not an optimum, although obviously the former is not either.

It should be noted that although our example is simple for the sake of brevity, more complex
models of the soil strength or an alternative model of foundations will lead to similar conclusions.
In the most recent research into the subject of optimal bridge forms, it can be read that ‘when
modelling a bridge containing end spans, a cost could potentially be ascribed to the resultant
horizontal reaction forces, which would in practice need to be carried by costly anchorages’ [40],
and ‘it can be observed that the horizontal reaction force generated at each end of the bridge is
very substantial, having a magnitude of over half that of the imposed deck-level load. Resisting
such a force in practice would likely be very costly’ [41].

7 CONCLUSION
A sound structural design theory has to account for the whole cost of materials that are nec-

essary for a given target, frequently defined by given useful loads, a structure size and a set of
surfaces where the structure can sit, see [8, 1–2]; that being especially important for an optimal
structural design theory, of course. This rule has its origin in thermodynamic accounting rules [5]
and is suggested by Maxwell [6]. This comprehensive accounting must be the common basis for any
approach to structural design theory, including structural optimization, whichever is the function
(or functions) to be optimized or the optimization method applied.

The historical review documented in this paper has shown that, Michell [1] following Maxwell,
presents a method fully respectful to this rule that can help to find an optimal structure when a set
of external forces in equilibrium is given. Although Michell’s work has been ignored for decades,
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Cox [2] recalls it and is able to formulate a sound structural design theory with some extensions, in
particular the distinction between the ‘free loading’ and ‘fixed boundary’ approaches, pointing out
the context where each of them can be useful.

After Cox’s work, some other methods for solving mathematical optimization problems de-
rived from structural analysis problems are established—see the classic books of Hemp [20] or
Rozvany [59]. However, many of them cannot easily tackle the problem of considering the whole
cost of alternative structures and materials involved, despite presenting an interesting advance from
a mathematical standpoint.

For that reason, the examples presented herein attempt to show that some mathematical so-
lutions that claimed to be optimal for partial accounting of structural cost, can be useless from a
practical perspective, and suggest the following conclusions:

1. The Maxwell-Michell theory allows to take into account the complete cost of the structure from
the very beginning of its design process, when the structural problem is adequately posed.

2. There is no actual discrepancy between the theory of Michell and those of Hemp or Prager,
normally the latter being only applicable to substructures, as they only take into account a
partial cost, not the whole cost of the complete structural solution to the posed problem.

3. The aphorism attributed to Voltaire,‘The best is the enemy of good’ has to be considered
seriously in order to incorporate these optimization techniques and findings to every-day work.
Nevertheless, many findings of optimization that search into the mentioned common basis can
be translated into design rules for structural types, and these rules can be perhaps more easily
incorporated in every-day work than the optimization methods from which these findings are
obtained. Of course, these rules do not guarantee the optimum, however they help very much
in obtaining good designs.
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