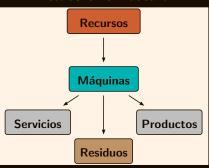
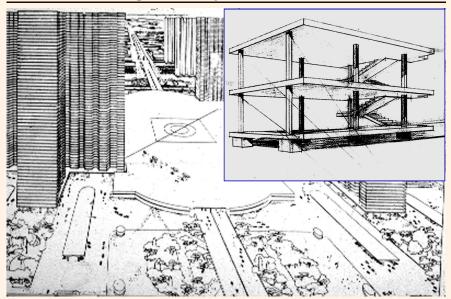

Reducción de la insostenibilidad mediante la rehabilitación urbana

Mariano Vázquez Espí

Zaragoza, 23 de noviembre de 2006.


- ¿Qué es la insostenibilidad?
- Coste energético del alojamiento
- La insostenibilidad desde el proyecto de rehabilitación

Sostenibilidad / Insostenibilidad


Metabolismo biológico

Metabolismo industrial

Sostenibilidad / Insostenibilidad

Contabilidad anual del consumo de recursos:

$$\frac{\text{fabricación}}{\text{vida útil}} + \text{uso} + \frac{\text{demolición...}}{\text{vida útil}}$$

Energía durante el uso

Consumo energético anual por hogar (MJ, 2000)

	and Beares and	por 1108ur (1115)
España	France	UE
37.700	77.500	71.179

Fuente: IDAE (2004)

Consumo de energía de los edificios según el uso (%)

Consumo de energia de los edificios seguir el diso (70)						
	Emisiones de CO ₂	Energía final	Energía final	Energía primaria		
	Edificios UK	Vivienda s ES	Vivienda s PL	Referencia estándar		
Uso	1991	2000	2004	_		
Climatización	48	47,4	71	50		
Agua caliente	16	20,4	13	16		
Cocina	7	9,6	9	9		
Electrodomésticos	s 29	22,7	7	25		

Fuentes: IDAE (2004); Vale et Vale (1991); Andresen et alii (2004); elaboración propia.

Energía de fabricación

Una horquilla para abarcar la disparidad de situaciones puede situarse entre $2.000 \text{ y } 8.000 \text{ MJ/m}^2$ de superficie construida.

Proporción del coste de fabricación por capítulos del presupuesto

capitalos del presupuesto	
Estructura	43 %
Albañilería	24 %
Carpintería	11%
Otros	22 %

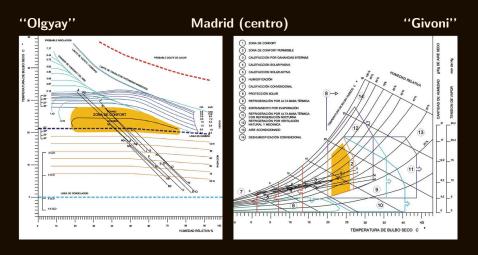
Fuente: Mardaras et Cepeda (2004)

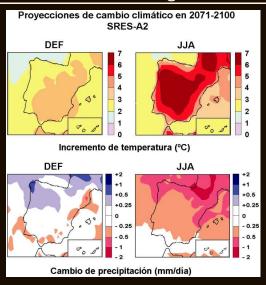
Coste energético anual del alojamiento

		Repercusión anual			
época	vida útil	fabricación	uso	total	
	(años)	MJ/m^2	MJ/m^2	MJ/m^2	
ca 1955	50	60	500	560	160 %
				0=0	1000/
ca 1995	30	100	250	350	100%
	50	60	250	310	89 %
	100	30	250	280	80 %

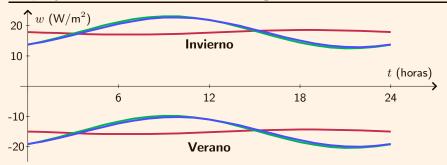
Se comparan edificios **confortables** con distinta durabilidad. No se incluyen el coste de demolición. Se considera el consumo durante el uso correspondiente a edificios de vivienda colectiva de calidad estándar para su época en España. En todos los casos, se ha considerado un coste de fabricación de $3.000 \, \mathrm{MJ/m^2}$.

Consumos anuales de combustibles según estrategias de sustitución

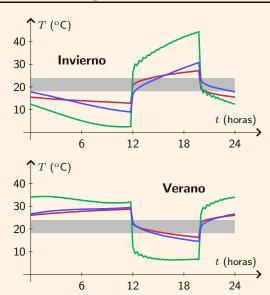

 $\mathsf{Total} = (\mathsf{Fabricaci\'on}[+\mathsf{demolici\'on}]) + \mathsf{Uso}\;(\,\mathsf{MJ/m^2})$


Nueva planta	Nueva planta	Rehabilitación	Rehabilitación
a 30 años	a 50 años	a 100 años	ecológica
			a 100 años
383 = 133 + 250	330 = 80 + 250	280 = 15 + 250	203 = 15 + 188
100%	86 %	73 %	53 %

Prioridades:


- disminuir el consumo durante el uso
- aumentar la durabilidad (vida útil)
- disminuir el coste de fabricación

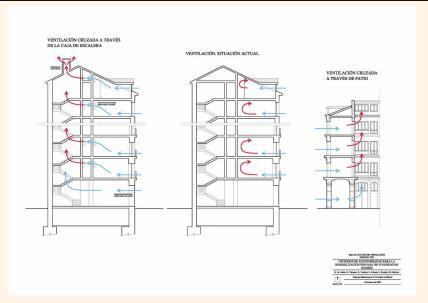
Caracterización climática

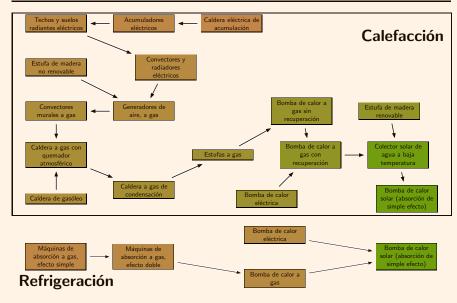


Fuente: José Manuel Moreno et alii (MMA:OECC 2005)

- En los tres casos el aislamiento térmico es el mismo y se aporta en cada instante el calor necesario para mantener la temperatura de confort.
- Muro homogeneo grueso. El de mayor inercia y el que demanda equipos de menor potencia.
- Muro fino con aislamiento interior
- Muro fino con aislamiento exterior

La franja gris representa la zona de confort. En este ejemplo, la calefacción (o la refrigeración) se enciende entre las 12 y las 20 horas y no hay confort en la mayor parte del tiempo. Con el muro aislado al interior, se sufren los peores sobrecalentamientos y subenfriamientos, tanto en verano como en invierno. El muro grueso sin aislar, es ligeramente mejor que el aislado por el exterior, durante el invierno.




San Cristobal de los Ángeles, Madrid; Luxán et Gómez.

Energía incorporada en materiales de construcción

Material	kWh/kg	MJ/kg	Material	kWh/kg	MJ/kg
Acero	9–11	32-40	Madera	0,08-0,86	0,3–3
Acero reciclado	2,5-4	9-14,4	Madera (aserrada)	1,58	5,7
Aluminio	53-64	191-230	Madera (tableros)	1,3-6,7	4,7-24
Aluminio reciclado	12-29	43-104	Plástico genérico	20-40	72-144
Arcilla cocida (cerámica)	0,7-5,4	2,5-19	Poliestireno	28-52,5	100-189
BTC (tierra)	0,13-0,4	0,47-1,44	Poliuretano	21-33	74-119
Cemento	2	7	Porcelana	7,5	27
Cobre	20-40	70-140	PVC	19-22	70-80
Hormigón	0,3-0,7	1,1-2,5	Vidrio	4,4-7,3	15,8-26,3
Ladrillo silicocalcáreo	0,5	1,8	Vidrio (en fibra)	8,4	30
,			Yeso	0,92-1,25	3,3-4,5

Los valores para materiales *reciclados* corresponden a procesos en los que se recicla *toda la cantidad de material técnicamente posible* con los procedimientos actuales.

3 m 3 m 3 m 5 m	Acero en tubos sin protección frente al fuego		gón armado encofrado	втс
Tensión segura (N/mm^2)	180	7,08	277	1,2
Peso (kN/m^3)	78,5	24	78,5	18
Energía incorporada (kWh/kg)	11	0,7	11	0,27
Coste energético (teórico)	0,48	0,24	0,39	0,41
(kWh/mkN)				

Coste energético por plantas y total (kWh)

4 ^a	364	480	249
3 ^a	599	480	440
2 ^a	833	480	693
1 ^a	1.069	619	884
Total	2.865	2.059	2.266
Coste energético real (kWh/mkN)	0,59	0,42	0,46

q=6,5 kN/m²

Coste de la resistencia térmica

Coste de fabricación de elementos aislantes planos y homogéneos con una resistencia térmica de $1\,\mathrm{m}^2\mathrm{K/W}$ (España).

Material aislante	Peso específico	Energía incorporada	Conductividad	Coste de la resistencia térmica
	kg/m^3	MJ/kg	W/mK	$MJ/(m^2K/W)$
Corcho aglomerado	150	1,5	0,042	9,45
UNE,5.690 (replantado)				
Lana de Vidrio FVM1	12	30	0,048	17,28
Lana (oveja)	100	15	0,036	52,56
PUR conformado I	32	74	0,023	54,46
EPS I	10	117	0,047	54,99
PUR in situ I	35	85	0,023	68,42
XPS I	20	117	0,036	84,24
Polietileno reticulado	30	103	0,038	117,42

Trasiego de materiales

kg por kg de material útil (excluida el agua)

(======================================	
Arcilla para cerámica	2,5
Bentonita	8
Carbón	2
Cobre	240-400
Hierro	6
Oro	5.000.000
Petróleo	2
Tierra para compactar	1,33
Yeso	6

Órdenes de magnitud para los procedimientos de extracción más habituales para cada material.

Minería metálica: contaminación accidental...

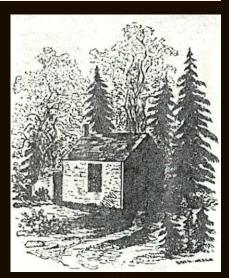
...y contaminación cotidiana.

Consumo de agua dulce para la fabricación de materiales

kg/kg	
Acero	46
Acero reciclado	44
Aluminio	750
Aluminio reciclado	49
Fibra de carbono	2.411
Fibra de vidrio	95
Poliuretano	480
PVC	679

<<< | >>>

Deforestación



Courtesy Richard Matth

El estomago del arquitecto

Essai sur l'Architecture. Abbé Laugier

Walden. Henry Thoreau

Reducción de la insostenibilidad mediante la rehabilitación urbana

Mariano Vázquez Espí

http://habitat.aq.upm.es Grupo de Investigación en Arquitectura y Urbanismo Más Sostenible de la UPM

> Edición del 23 de noviembre de 2006 Compuesto con free software: GNULinux/LATEX/dvips/ps2pdf

> > Copyleft ©Vázquez Espí, 2006